

OPTION ' x '

CHECKED
AT REV.
A

RDS \quad| DRAWING NOT TO BE CHANGED WITHOUT REFERENCE TO THE CHANGE PROCEEDURE. |
| :--- |
| CHANGES TO PARTS USED IN INTRINSICALLY SAFE PRODUCT MUST BE APPROYED |
| BY THE AUTHORISED PERSON |
| THIS IS AN UNCONTROLLED PRINT AND WILL NOT BE UPDATED |

'S' ALUMINIUM $6063 \phi 3 / 8$ " ($9.2-9,8$); NOTE! ONLY AVAILABLE WITH P100 OR P106 VERSIONS.

target tube Mounting notes, see drawing p100-12.

E	MATERIAL OPTION REMOVED.	PDM
F	MAT'L OPTION REINSTATED RAN221.	PDM
G	X DIM FOR PH FLANGE SHOWN RAN225	DS
H	9.45 WAS 9.5 RAN396	RDS
J	REDRAWN, PH FLANGE ROTATED RAN507.	PDM
K	NOTE 1 AMENDED ~ RAN1114.	PDM
L	'x' WAS 'n' ~ RAN1309	PDM

CHANGES TO PARTS USED IN INTRINICALY SAFE PRODUCT MUST BE APRROVED
BY THE AUTHORISED PERSSN

POSITEI

	16/10/06	(-) -		
F	24/09/08			
G	13/11			
H	11/1	DESCRIPTION TARGET TUBE AND FLANGE OPTIONS (LIPS 100/106)		
J	23			
K	30/1			
L	08/11/22			
$\xrightarrow{\substack{\text { SCALE } \\ \leftarrow}}$				

G100 CYLINDER - LINEAR POSITION SENSOR INTRINSICALLY SAFE FOR HAZARDOUS GAS/VAPOUR ATMOSPHERES

- Intrinsically safe for Gas to: Class I, Zone 0 Ex ia / AEx ia
- Non-contacting inductive technology to eliminate wear
- Compact and self-contained
- High durability and reliability
- High accuracy and stability
- \quad Sealing to IP65/IP67 as required

As a leading designer and manufacturer of linear, rotary, tilt and intrinsically safe position sensors, Positek ${ }^{\circledR}$ has the expertise to supply a sensor to suit a wide variety of applications.
Our intrinsically safe G100 incorporates electronics system EX06 which is CSA approved for use in potentially explosive gas/vapour atmospheres. The G100 is designed for demanding hydraulic or pneumatic cylinder position feedback applications where service life, environmental resistance and cost are important and is ideal for OEMs seeking good sensor performance for arduous applications in hazardous areas.
Overall performance, repeatability and stability are outstanding over a wide temperature range. The unit is highly compact and space-efficient, being responsive along almost its entire length. Like all Positek ${ }^{\circledR}$ sensors, the G 100 provides a linear output proportional to travel. Each unit is supplied with the output calibrated to the travel required by the customer, any stroke from 05 mm to $0-800 \mathrm{~mm}$ and with full EMC protection built in.
The sensor is very rugged, being made of stainless steel with an inert fluoropolymersheathed probe with a stainless steel target tube. The sensor is easy to install in cylinders and has a range of mechanical options. Environmental sealing is to IP65 or IP67 depending on selected cable or connector options.

SPECIFICATION

Dimensions

Body diameter	35 mm
Body Length (to seal face)	43 mm

Body Length (to seal face) 43 mm
Probe Length (from seal face) calibrated travel +58 mm
Target Tube Length calibrated travel +30 mm
For full mechanical details see drawing G100-11
Power Supply $\quad+5 \mathrm{~V}$ dc nom. $\pm 0.5 \mathrm{~V}, 10 \mathrm{~mA}$ typ 20 mA max
Output Signal
$0.5-4.5 \mathrm{~V}$ dc ratiometric, Load: $5 \mathrm{k} \Omega \mathrm{min}$.
Independent Linearity $\quad \leq \pm 0.25 \%$ FSO @ $20^{\circ} \mathrm{C}$ - up to 450 mm
$\leq \pm 0.5 \%$ FSO @ $20^{\circ} \mathrm{C}$ - over 450 mm
$\leq \pm 0.1 \%$ FSO @ $20^{\circ} \mathrm{C}^{*}$ available upon request.
*Sensors with calibrated travel from 10 mm up to 400 mm .
Temperature Coefficients $< \pm 0.01 \% /{ }^{\circ} \mathrm{C}$ Gain \&
Frequency Response
$< \pm 0.01 \%$ FS $/{ }^{\circ} \mathrm{C}$ Offset
Resolution
Noise
Intrinsic Safety
$>10 \mathrm{kHz}(-3 \mathrm{~dB})$
< 0.02\% FSO
Class I, Zone 0
Ex ia IIC T4 $\left(\mathrm{Ta}=-40^{\circ} \mathrm{C}\right.$ to $+80^{\circ} \mathrm{C}$)
AEx ia IIC T4 ($\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$)
Approval only applies to the specified ambient temperature range and atmospheric conditions in the range 0.80 to 1.10 Bar, oxygen $\leq 21 \%$
Sensor Input Parameters Ui: $11.4 \mathrm{~V}, \mathrm{Ii}: 0.20 \mathrm{~A}, \mathrm{Pi}: 0.51 \mathrm{~W}$.
(connector option/s) $\mathrm{Ci}: 1.16 \mu \mathrm{~F}, \mathrm{Li}: 50 \mu \mathrm{H}$
(cable option/s) $\quad \mathrm{Ci}: 1.36 \mu \mathrm{~F}, \mathrm{Li}: 710 \mu \mathrm{H}$ with 1 km max. cable
Environmental Temperature Limits
$\begin{array}{ll}\text { Operating } & -40^{\circ} \mathrm{C} \text { to }+80^{\circ} \mathrm{C} \\ \text { Storage } & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\end{array}$
Storage $\quad-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Sealing
IP65/IP67 depending on connector / cable option
350Bar
EMC Performance EN 61000-6-2, EN 61000-6-3
mance
IEC 68-2-6: $\quad 10 \mathrm{~g}$
Shock
MTBF
Drawing List
G100-11
IEC 68-2-29: $\quad 40 \mathrm{~g}$
350,000 hrs $40^{\circ} \mathrm{C} \mathrm{Gf}$

P100-12
Sensor Outline
$\begin{array}{ll}\text { P100-12 } & \text { Typical Target Installation } \\ \text { P100-15 } & \text { Mounting Thread details }\end{array}$
TG24-11
Drawings, in AutoCAD ${ }^{\circledR} d w g$ or $d x f$ format, available on request.

Do you need a position sensor made to order to suit a particular installation requirement or specification? We'll be happy to modify any of our designs to suit your needs please contact us with your requirements.

G100 CYLINDER - LINEAR POSITION SENSOR INTRINSICALLY SAFE FOR HAZARDOUS GAS/VAPOUR ATMOSPHERES

Intrinsically safe equipment is defined as "equipment which is incapable of releasing sufficient electrical or thermal energy under normal or abnormal conditions to cause ignition of a specific hazardous atmosphere mixture in its most easily ignited concentration."
CSA approved to;

> Class I, Zone 0
> Ex ia IIC T4 $\left(\mathrm{Ta}=-40^{\circ} \mathrm{C}\right.$ to $\left.+80^{\circ} \mathrm{C}\right)$
> AEx ia IIC T4 $\left(\mathrm{Ta}=-40^{\circ} \mathrm{C}\right.$ to $\left.+80^{\circ} \mathrm{C}\right)$

Designates the sensor as belonging to; Class I, Zone 0: can be used in areas with continuous, long or frequent periods of exposure to hazardous gas / vapours.

Protection class ia IIC, denotes intrinsically safe for Zones $0,1 \& 2$ and IIA, IIB and IIC explosive gases.
Temperature class T 4 : maximum sensor surface
temperature under fault conditions $135^{\circ} \mathrm{C}$.
Ambient temperature range extended to $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
It is imperative Positek ${ }^{\circledR}$ intrinsically safe sensors be used in conjunction with a galvanic barrier to meet the requirements of the product certification. The Positek G005 Galvanic Isolation Amplifier is purpose made for Positek IS sensors making it the perfect choice. Refer to the G005 datasheet for product specification and output configuration options.

Safety Parameters:-

Ui: 11.4 V , Ii: $0.20 \mathrm{~A}, \mathrm{Pi}: 0.51 \mathrm{~W}$
$\mathrm{Ci}=1.36 \mu \mathrm{~F}^{*} \quad \mathrm{Li}=710 \mu \mathrm{H}^{*}$ (cable option/s)
$\mathrm{Ci}=1.16 \mu \mathrm{~F} \quad \mathrm{Li}=50 \mu \mathrm{H}$ (connector option/s)
*Figures for 1 km cable where: $\mathrm{Ci}=200 \mathrm{pF} / \mathrm{m}$ \& $\mathrm{Li}=660 \mathrm{nH} / \mathrm{m}$
Sensors can be installed with a maximum of 1000 m of cable. Cable characteristics must not exceed:-
Capacitance: $\leq 200 \mathrm{pF} / \mathrm{m}$ for max. total of: 200 nF . Inductance: $\leq 660 \mathrm{nH} / \mathrm{m}$ for max. total of: $660 \mu \mathrm{H}$
For cable lengths exceeding 10 metres a five wire connection is recommended to eliminate errors introduced by cable resistance and associated temperature coefficients.
CSA approved sensors suitable for dust (H series, USA only) applications, are also available from Positek.

TABLE OF OPTIONS

CALIBRATED TRAVEL: \quad Factory set to any length from $0-5 \mathrm{~mm}$ to 0 800 mm (e.g. 254 mm)

ELECTRICAL INTERFACE OPTIONS

Sensors supplied with access to output 'zero' and 'span' calibration adjustments as standard. No access option available.
The Positek ${ }^{\circledR}$ G005 Galvanic Isolation Amplifier is available with the
following output options;
Standard: $\quad 0.5-9.5 \mathrm{~V}$ or $4-20 \mathrm{~mA}$.
Reverse: $\quad 9.5-0.5 \mathrm{~V}$ or $20-4 \mathrm{~mA}$.

CONNECTOR/CABLE OPTIONS

Connector - Hirschmann GD series IP65
Cable $^{+}$with M12 gland or short gland IP67
${ }^{\dagger}$ Three core (black jacket) or five core (blue jacket) cable options available.
Cable length $>50 \mathrm{~cm}$ - please specify length in cm up to 15000 cm max.
We recommend all customers refer to the 3 or 5 -Wire Mode Connection page.
MOUNTING THREAD OPTIONS
M18, M20, 3/4 UNF 30 mm hex A/F, Ø30 mm seal face.
Supplied with O-ring seal.

FLANGE OPTIONS

Penny \& Giles HLP100, Temposonics (M4 fixing) and Parker Hannifin cylinders versions available.

Three or Five-Wire Mode Connection FOR INTRINSICALLY SAFE SENSORS IN HAZARDOUS ATMOSPHERES

The aim of this document is to help readers who do not understand what is meant by three or five wire modes of connection between the galvanic isolation amplifier and sensor, and the factors behind them. It is by no means an in-depth technical analysis of the subject.
Whether opting for a pre-wired Posite ${ }^{\circledR}$ Intrinsically Safe sensor or one with a connector, choosing the right mode of connection and cable to suit the application requires careful consideration.
Interconnecting cables are not perfect conductors and offer resistance to current flow, the magnitude of resistance ${ }^{\dagger}$ depends on conductors resistivity, which changes with temperature, cross sectional area ${ }^{\ddagger}$ and length. If the voltage were to be measured at both ends of a length of wire it would be found they are different, this is known as volts drop. Volts drop changes with current flow and can be calculated using Ohm's law, it should be noted that volts drop occurs in both positive and negative conductors. The effects of volts drop can be reduced by increasing the conductors cross sectional area, this does not however eliminate the effects due to temperature variation. There are instances where large cross-section cables are not practical; for example most standard industrial connectors of the type used for sensors have a maximum conductor capacity of $0.75 \mathrm{~mm}^{2}$, copper prices and ease of installation are other considerations.
This is important because the effects of volts drop can significantly alter the perceived accuracy of the sensor which is ratiometric i.e. the output signal is directly affected by the voltage across the sensor. Changes in temperature will also be seen as gain variation in the sensor output.
Three wire mode connections are common and are suitable in most cases with short or moderate cable runs. Applications that do not require a high degree of accuracy but have cable runs, say in excess of 10 m , volts drop can reduced by introducing a terminal box close to the sensor and using a larger cross-section cable for a majority of the cable run. Sensors supplied with three core cable are calibrated with the cable fitted which largely eliminates errors due to conductor resistance at room temperature however, as mentioned above, small gain errors due to temperature fluctuations should be expected.
Five wire mode connections have significant benefits as losses in the positive and negative conductors are compensated for by the galvanic isolation amplifier which can 'sense' the voltage across the sensor and dynamically adjust the output voltage so that the voltage across the sensor is correct. The effects of cable resistance and associated temperature coefficients are eliminated allowing for smaller conductors than a three wire connection for the same cable run. The amplifier can compensate for up to 15Ω per conductor with a current flow of 15 mA , which is more than adequate for 150 m of $0.25 \mathrm{~mm}^{2}$ cable, longer lengths will require larger conductors.

For this reason Positek ${ }^{\circledR}$ recommends five wire connections for cable lengths exceeding $\mathbf{1 0}$ metres in $\mathbf{0 . 2 5} \mathbf{~ m m}{ }^{2}$ cable to preserve the full accuracy of the sensor.

See illustrations below for examples of connecting a sensor to the galvanic isolation amplifier.

The table above shows recommended conductor sizes with respect to cable length for both three and five wire connections, based on copper conductors. Three wire connections will introduce a gain reduction of 5% and a $\pm 1 \%$ temperature dependence of gain over the range $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ for the cable temperature. (i.e. about $-150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for the maximum lengths shown and less pro rata for shorter lengths.)
It should be noted that the maximum cable length, as specified in the sensor certification, takes precedence and must not be exceeded.
Positek ${ }^{\circledR}$ sensors are supplied with three core $0.25 \mathrm{~mm}^{2}$ cable as standard, however five core $0.25 \mathrm{~mm}^{2}$ cable can be supplied on request. The galvanic isolation amplifier is available as;

> G005-*** for ' G^{\prime} and ' H ' prefix sensors
> X005-*** for ' E , ' M ' and ${ }^{\prime} \mathrm{X}$ ' prefix sensors

[^0]Intrinsically Safe - Gas/Vapour Atmospheres G100 Cylinder - Linear Position Sensor

	a	b	c	d	e	f	g
G100	. Displacement	A	Adjustments	Connections	Option	R	Option

a Displacement (mm)		Value
Displacement in mm	e.g. 0-254 mm	254
b Output		
Supply V dc V_{s} (tolerance)	Output	Code
+5V (4.5-5.5V)	0.5-4.5V (ratiometric with supply)	A
c Calibration Adjustments		Code
Accessible - default Sealed		blank \mathbf{Y}
d Connections Cable or Connector		Code
Connector	IP65 DIN 43650 ' ${ }^{\text {' }}$	J
	pre-wired - 3-core cable	Jxx
	pre-wired - 5-core cable	JQxx
Cable Gland	IP67 nylon - 3-core cable	Lxx
	IP67 nylon - 5-core cable	LQxx
Cable Gland ${ }^{+}$	IP67 Short - 3-core cable	Mxx
	IP67 Short - 5-core cable	MQxx

Specify required cable length ' $\mathbf{x x}$ ' in cm . e.g. L2000 specifies cable gland with 20 m of cable, 50 cm supplied as standard. ${ }^{+} \mathrm{Nb}$: restricted cable pull strength.

e Mounting Thread		Code
$\begin{aligned} & \text { M20 x } 1.5 \\ & 3 / 416 \text { UNF } \\ & \text { M18 } \times 1.5 \end{aligned}$ See P100-15 Drawing for Mating	Hex. $30 \mathrm{~mm} \mathrm{A/F}, \varnothing 30 \mathrm{~mm}$ seal face. Supplied with O-ring seal. hread Details.	N \mathbf{P} T
f Target Tube		Code
Stainless Steel 316 See P100-12 Drawing for Typical	OD: 9.45 mm Target Installation details.	R
g Target Tube Moun	ng Flange	Code
None		U
Penny \& Giles HLP100	Please specify flange position in mm .	Vxx
Temposonics (M4 fixing) Parker Hannifin	eg. W17.5 specifies a Tempo style flange fitted 17.5 mm from the front face	Wxx Xxx
See TG24-11 Drawing for Target Details.		
h Z-code		Code
Calibration to suit G005 - Default		Z000
Connector IP67 M12 IEC 60176-2-101must have options ' Y ' \& J^{\prime}		Z600
Connector IP67 M12 IEC 60176-2-101must have option ${ }^{\top}$ ' $\leq \pm 0.1 \%$ @ $20^{\circ} \mathrm{C}$ Independent Linearity displacement between $10 \mathrm{~mm} \& 400 \mathrm{~mm}$ only!		Z601
		Z650

LIMITED
CSA Qualified Intrinsically Safe Device
Class I, Zone 0
Certificate number 13.2588225

Electronics Option	Output Description:	Supply Voltage: V_{s} (tolerance)	Load resistance:
A	0.5-4.5V (ratiometric with supply)	$+5 \mathrm{~V}(4.5-5.5 \mathrm{~V})$	$5 \mathrm{k} \Omega$ min

Connector Pin Layout:

Putting Into Service:

The sensor must be used with a galvanic isolation barrier designed to supply the sensor with a nominal 5 V and to transmit the sensor output to a safe area. The barrier parameters must not exceed:-

$$
\begin{array}{lcl}
\mathbf{U i}=11.4 \mathrm{~V} & \mathbf{I i}=\mathbf{0 . 2 0 A} \quad \mathbf{P i}=\mathbf{0 . 5 1 \mathbf { W }} \\
\mathbf{C i}=1.36 \mu \mathrm{~F} & \mathbf{L i}=710 \mu \mathrm{H}^{*} & \text { (with maximum length integral cable) } \\
\mathbf{C i}=1.16 \mu \mathrm{~F} & \mathbf{L i}=50 \mu \mathrm{H} & \text { (without integral cable) }
\end{array}
$$

*Figures for 1 km cable where: $\mathrm{Ci}=200 \mathrm{pF} / \mathrm{m} \mathrm{\&} \mathrm{Li}=660 \mathrm{nH} / \mathrm{m}$
The sensor is certified to be used with up to $\mathbf{1 0 0 0} \mathbf{m}$ of cable, cable characteristics must not exceed:-
Capacitance: $\leq 200 \mathrm{pF} / \mathrm{m}$ for max. total of: 200 nF
Inductance: $\leq 660 \mathrm{nH} / \mathrm{m}$ for max. total of: $660 \mu \mathrm{H}$

Use:

The sensor is designed to measure Linear or rotary displacement and provide an analogue output signal.

Assembly and Dismantling:

The unit is not to be serviced or dismantled and re-assembled by the user.
WARNING: Substitution of components may impair intrinsic safety
AVERTISSEMENT: La substitution de composants peut altérer la sécurité intrinsèque

Maintenance:

No maintenance is required.

Installation Information G100 CYLINDER - LINEAR POSITION SENSOR INTRINSICALLY SAFE FOR HAZARDOUS GAS/VAPOUR ATMOSPHERES

Approval only applies to specified ambient temperature range and atmospheric conditions in the range: 0.80 to 1.10 Bar, oxygen $\leq 21 \%$.

The G100 is available with the following connections:-

IP65 DIN 43650 C Connector
IP67 Cable gland with cable
Options 'Lxx', 'LQxx', 'Mxx' or 'MQxx'
The performance of the sensor may be affected by voltage drops associated with long cable lengths; For cable lengths exceeding 10 metres a five wire connection is recommended to eliminate errors introduced by cable resistance and associated temperature coefficients.
Cable Up to 150 m of $0.2 \mathrm{~mm}^{2}$, screened, PUR jacket; 3 core cable 4 mm dia. black,
5 core cable 4.6 mm dia. Blue.
N.b. sensors supplied with cable, the free end must be appropriately terminated.

Gain and Offset Adjustment: (Where accessible - Typically $\pm 10 \%$ Min available)
To adjust the gain or offset use a small potentiometer adjuster or screwdriver 2 mm across. Do not apply too much force on the potentiometers.

Mechanical Mounting: Via mounting thread, maximum tightening torque: 100 Nm . See drawing P100-15, Installation Details Mounting Threads \& Seals. An O ring seal is provided, size BS908 for M20 \& 3/4 UNF thread or 14.3×2.4 for M18 thread. Install the target tube using the flange provided or fix directly into the piston rod using adhesive for instance, the end of the target tube can be proud or flush with the piston end face as required.

Output Characteristic: Target position at start of normal travel is 36.0 mm from seal face. The output increases as the target is moved away from the sensor body, the calibrated stroke is between 5 mm and 800 mm .

Incorrect Connection Protection levels: Not protected - the sensor is not protected against either reverse polarity or over-voltage. The risk of damage should be minimal where the supply current is limited to less than 50 mA .

[^0]: ${ }_{\ddagger}^{+} R=\rho L / A \rho$ is the resistivity of the conductor $(\Omega m) L$ is the length of conductor (m) A is the conductor cross-sectional area (m^{2}).
 ${ }^{\ddagger}$ It is presumed that direct current flow is uniform across the cross-section of the wire, the galvanic isolation amplifier and sensor are a dc system.

